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Abstract. A particular transformation of coordinates, associated with superluminal X-pulses, leaves the
wave equation invariant and changes focus wave modes into superluminal focus wave pulses. Rather simple
and manageable expressions for TM electromagnetic waves allow the investigation of these new localized
solutions of Maxwell’s equations.

PACS. 43.20.Bi Mathematical theory of wave propagation – 41.20.Jb Electromagnetic wave propagation,
radiowave propagation

1 Introduction

Much work over the past fifteen years has been devoted
to localized wave solutions of the scalar wave equation
[1–7]. Some of these pulses carry a finite energy and since
they describe ultrawide band, spatially localized, slowly
decaying transmission of energy, they have found many
applications in various areas ranging from remote sens-
ing and communications to solid state physics and med-
ical imaging provided of course that one is able to build
physical devices to launch these pulses. In free space, the
only situation considered here,there exist three classes of
localized solutions: focus wave modes (FWM) [8,9], su-
perluminal X-pulses [10,11], subluminal X-pulses [12,13].
We show here that scalar and Maxwell’s equation allow
superluminal focus wave modes as solutions.

Electromagnetic FWM’s have been previously ob-
tained either from the Hertz vector potential [3] or from
the complex representation E+ iH of the electromagnetic
field [14,16]. For electromagnetic focus FWM’s, we use an
approach different to [3,16]. Let Ax(x, t), Ay(x, t) {x =
(x, y, z)} be two arbitrary solutions of the scalar wave
equation DA = 0. The components of the solutions to
Maxwell’s equations are

Ex = −1/c ∂t∂zAx,

Ey = −1/c ∂t∂zAy,

Ez = 1/c ∂t(∂xAx + ∂yAy)

Hx = ∂x∂yAx + (∂2
y + ∂2

z )Ay ,

Hy = −∂x∂yAy − (∂2
x + ∂2

z )Ax,

Hz = ∂z(∂yAx − ∂xAy). (1)

We assume:

Ay = 0, 1/c ∂zAx = Bx, ∂yBx = 0 (2)
a pierre.hillion@wanadoo.fr

in which Bx is a localized wave solution of the scalar wave
equation supplying localized electromagnetic pulses. Since
Bx does not depend on y, we obtain from (2) the TM
waves

Ey = Hx = Hz = 0, Ex = −∂zBx(u, t),
Ez = ∂xBx(u, t), Hy = −1/c∂tBx(u, t) (3)

where u = (x, z). From now on, we concentrate on the
TM waves (3) which is sufficient to describe the main fea-
tures of the electromagnetic FWM’s and we are mainly
concerned with the research of finite energy weighted TM
and superluminal pulses.

2 Electromagnetic focus wave modes

2.1 TM-pulses

The 2D-scalar FWM’s have the form [16] in which a, b are
positive constants

ψ(u, t) = w−1/2 exp
[
ib(z + ct) − bx2/w)

]
,

w = a+ i(z − ct). (4)

Substituting (4) into (3) gives with Bx = iψ the TM focus
wave modes

Ex(u, t) = w−1/2ex(b) exp(−bΩ),

ex(b) = b(1 + x2/w2) − 1/2w

Ez(u, t) = w−1/2ez(b) exp(−bΩ),
ez(b) = −2ibx/w

Hy(u, t) = w−1/2hy(b) exp(−bΩ),

hy(b) = −b (
1 − x2/w2

) − 1/2w (5)
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in which

Ω = x2/w − i(z + ct). (6)

In order to check the energy carried on by FWM’s we
are interested in the TM weighted FWM’s known as splash
wave modes [3,16,18]

EF,x(u, t) =
∫ ∞

0

dbF (b)w−1/2ex(b) exp(−bΩ)

EF,z(u, t) =
∫ ∞

0

dbF (b)w−1/2ez(b) exp(−bΩ) (7)

HF,y(u, t) =
∫ b

0

dbF (b)w−1/2hy(b) exp(−bΩ)

where F (b) is a weight function which should supply pulses
with finite energy. For instance, with F (b) = J0(bk) in
which J0 is the Bessel function of the first kind of or-
der zero and k a positive scalar, the integrals (7) be-
come Lipschitz-Hankel integrals [17] with an explicit ex-
pression given in [18], but as discussed in Section 3 and
Appendix A, their energy is not finite.

2.2 Superluminal TM-pulses

Let us introduce the coordinates

ζ = g(vz/c− ct), cτ = g(z − vt), g−2 = v2/c2 − 1
(8)

then, substituting ζ, τ , to z, t, into (4) gives the superlu-
minal focus wave modes

φ(u, t) = ω−1/2 exp
[
ibj(z − ct) − bx2/ω)

]
(9)

in which with jm = 1

j = g(v/c+ 1), m = g(v/c− 1), ω = a+ im(z + ct).
(10)

Substituting φ(u, t) into (3) gives the TM superluminal
FWM’s

Ex(u, t) = ω−1/2εx(b) exp(−bΠ),

εx(b) = b(j +mx2/ω2) −m/2ω

Ez(u, t) = ω−1/2εz(b) exp(−bΠ), εz(b) = −2ibx/ω

Hy(u, t) = ω−1/2ξy(b) exp(−bΠ),

ξy(b) = −b(j −mx2/ω2) − 1/2ω (11)

with

Π = x2/ω2 − ij(z − ct). (11a)

Superluminal splash wave modes are obtained as in (7)
through a weight function F (b).
Remark: using (8) and the substitutions a = 0, g = −iγ,
b = −iβ implying σ = γ(z−vt) in (4) gives the subluminal
FWM’s

φ<(u, t) = ω
−1/2
0 exp

[−iβγ(1 + v/c)(z − ct) − iβx2/ω0

]
(12)

with

ω0 = a− γ(1 − v/c)(z + ct) (13)

but the singularities of these expressions make subluminal
pulses uninteresting.

3 Finite energy FWM’s

Most of FWM’s carry an infinite energy which is not a
drawback per se: plane wave solutions also share this prop-
erty. Nevertheless to satisfy the practical objectives men-
tioned in the introduction, one should be able to generate
finite energy pulses. Then, we investigate the electromag-
netic energy carried by FWM’s.

U =
∫∫ ∞

0

dxdz
(|EF,x|2 + |EF,z|2 + |HF,y|2

)
. (14)

3.1 Splash wave modes (7)

We get in Appendix A

U = 4π3/2(2a)−1/2

∫ ∞

0

db(b3/2 + b1/2/4a)|F (b)|2. (15)

So, U is finite if the following integrals are bounded for
n = 1, 3

Tn =
∫ ∞

0

db bn/2|F (b)]2. (15a)

As a simple example, we consider the Bessel weight func-
tions Fµν(bk) = Jν(bk)bµ−1 where k is a positive scalar
and, the integrals (15a) therefore become discontinuous
Weber-Schafhteilin integrals [17]

Tn,µν =
∫ ∞

0

db[Jν(bk)]2/b2−2µ−n/2 (16)

which converge for 2ν + 1 > 2 − 2µ − n/2 > 0 that is
for µ + ν > 1/4 and µ < 1/4 for n = 1, 3. Writing α =
2 − 2µ − n/2 the exponent of b, one has [17] when the
previous conditions are fulfilled

Tn,µν = (k/2)α−1Γ (α)Γ (ν − α/2 − 1/2)

× [
2Γ 2{(α+ 1)/2}Γ (ν + α/2 + 1/2

]−1
(17)

in which Γ is the gamma function. The splash wave modes
(7) with F (b) = J0(bk) carry an infinite energy since the
conditions for the convergence of (16) are not satisfied.
But the integrals (15a) are bounded for exponential weight
functions so that there exists a great diversity of finite
energy splash wave solutions of Maxwell’s equations.
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3.2 Superluminal splash wave modes (11)

We prove in Appendix B that weighting (11) as in (7), the
electromagnetic energy is U = U1 + U2 with

U1 = 4π3/2(2a)−1/2

∫ ∞

0

db[(2 −m2)b3/2

+m2b1/2/4a+ p(b)]|F (b)|2 (18)

p(b) = (2a)1/2b2(j2+m2−2)
∫ ∞

0

dy exp(−y)(y+2ab)−1/2

(18a)

and with h = aj/m− 2ijct, Reh > 0

U2 = 2π3/2[m2 − 1)/am]
∫∫ ∞

0

bb′ db db′

× F (b)F ∗(b′) exp(−h|b− b′|). (19)

But:

|p(b)| ≤ (2aπ)1/2b2(j2 +m2 − 2) exp(−2ab). (20)

So, U1 is finite if the integrals (15a) for n = 1, 3 and the
integral

∫ ∞
0 db b2 exp(−2ab) |F (b)|2 are bounded. Now, for

b > b′, we have exp(hb′) < exp(hb) so that

U2 ≤ 2π3/2[m2 − 1)/am]
∫ ∞

0

b dbF (b)
∫ ∞

0

b′ db′F ∗(b′)

(21)

and using the approximation
∫ ∞
0 b′db′F ∗(b′) = b2/2F ∗(b)

gives

U2 ≤ 2π3/2[m2 − 1)/am]
∫ ∞

0

b3/2dbF (b). (21a)

So U is finite if (15a) is bounded for n = 6.
Thus the conditions for finite energy TM superlumi-

nal FWM’s are more stringent than those for the TM
pulses (6) but they are also satisfied by exponential weight
functions.

4 Conclusions

Using the simple TM waves (3) rather than the gen-
eral components (1) avoids cumbersome calculations
(leaving aside complex media requiring more develop-
ments [22–25]) with no consequence on the physical under-
standing of electromagnetic localized wave propagation.

An important question is whether it is possible to build
a physical device able to launch finite energy electromag-
netic and scalar localized waves. First, according to rel-
ativity, no information can propagate with superluminal
velocities. So, the answer to this question is clearly no
for superluminal FWM,s as for superluminal X-waves [26]

which is not in contradiction with the superluminal be-
haviors in wave propagation observed in some experi-
ments [27,28] since in fact only the peaks of the waves
travel (for a while) with superluminal group velocities
[26,29] while the front travels at the velocity of light (see in
particular [30,31] where superluminal processes are thor-
oughly analysed and explained). Note that it was proved
some years ago [32] that one may generate (approximate)
acoustical FWM’s with better performances than usual
Gaussian beams. There is no doubt that to launch elec-
tromagnetic FWM’s is more challenging!

Incidently, according to a recent theory [33], the cos-
mic ray bursts recently observed by astrophysicists would
come from the desexcitation of energetic electrons gener-
ated by the collapse of massive black holes and it has been
shown [34] that such a desexcitation process can produce
focus wave modes. Could gamma ray bursts be made of
FWM’s ?

The results obtained in this paper for 2D-pulses can be
generalized to 3D-pulses. The scalar FWM’s [8,9] and X-
pulses [5] have the form with x = (x, y, z) and r2 = x2+y2

ψ(x, t) = w−1 exp[ib(z + ct)− br2/w)], w = a+ i(z − ct)
(22)

and with the variables of (8)

Φ(x, t) = (r2 + σ2)−1/2 exp[ibζ − b(r2 + σ2)], σ = a+ icτ
(23)

while the scalar superluminal focus wave modes utilise the
notations of (10)

φ(x, t) = ω−1 exp
[
ibj(z − ct) − br2/ω)

]
. (24)

But to get the electromagnetic FWM’s and superluminal
FWM’s, one has now to work with the full equations (1)
making calculations a bit more intricate.

Using (8), a referee has obtained the two families of so-
lutions (n = 1, 2) in which F is an arbitrary differentiable
function

Ψ(x) = A−1
n F (bΘn) (25)

A1 = (j/m)1/2(z + ct) + a0,

A2 =
[
(z − βct)2 + (1 − β2)r2

]1/2
, β = v/c (25a)

Θ1 = (j/m)1/2(z − ct) + r2/A1, Θ2 = ct− z ±A2

(25b)

in which a0 is a constant with j,m, given by (10) and
leading possibly, with appropriate F function, to local-
ized solutions with a better focusing degree than the
Brittingham-Kiselev FWM’s.

We postpone to a later work the discussion of super-
luminal 3D-FWM,s with finite energy.
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Appendix A

The electromagnetic energy U of TM pulses is

U =
∫∫ ∞

−∞
dxdzI(x, z),

I(x, z) =
(|EF,x|2 + |EF,z|2 + |HF,y|2

)
(A.1)

with, according to (7), the asterisk denoting the complex
conjugation

I(x, z) = |w|−1

∫∫ ∞

0

db db′ F (b)F ∗(b′)

× exp(−bΩ − b′Ω∗)P (b, b′) (A.2)

in which w = a+ i(z − ct), Ω = x2/w − i(z + ct) and

P (b, b′) = ex(b)e∗x(b′) + ez(b)e∗z(b
′) + hh(b)h∗y(b′). (A.3)

A simple calculation gives

exp(−bΩ − b′Ω∗) = exp[i(b − b′)(z + ct)] exp(−λx2/|w|2)
(A.4)

where

λ = a(b + b′) + i(b − b′)(z − ct), |w|2 = a2 + (z − ct)2.
(A.5)

Substituting (A.4) into (A.2) gives

I(x, z) =
∫∫ ∞

0

db db′F (b)F ∗(b′) exp[i(b − b′)(z + ct)]G(x)

(A.6)

G(x) = |w|−1P (b, b′) exp
(−λx2/|w|2) . (A.7)

Taking into account (A.6) and exchanging the order of
integrations we get from (A.1)

U=
∫∫ ∞

0

db db′F (b)F ∗(b′)
∫ ∞

−∞
dz exp[i(b− b′)(z + ct)]

×
∫ ∞

−∞
dxG(x). (A.8)

Now substituting the expressions (5) of ex, ez, hy,
into (A.3) gives

P (b, b′) = 2bb′(1 + x4/|w|4) + 1/2|w|2
− (b/w + b′/w∗)x2/|w|2 + 4bb′x2/|w|2

= 2bb′ + 1/2|w|2 + (4bb′ − λ|w|−2)x2/|w|2
+ 2bb′x4/|w|4 (A.9)

where we used the relation b/w + b′/w∗ = λ|w|−2. So,
according to (A.7) and (A.9)
∫ ∞

−∞
dxG(x) =

∫ ∞

−∞
dx|w|−1

[
2bb′ + 1/2|w|2

+
(
4bb′ − λ|w|−2

)
x2/|w|2

+2bb′x4/|w|4] exp
(−λx2/|w|2) (A.10)

and using the integrals [20]

∫ ∞

−∞
dxx2n exp(−λx2/|w|2) =

1.3...(2n− 1)(π/λ)1/2|w|(|w|2/2λ)n (A.11)

we get
∫ ∞

−∞
dxG(x) = 2bb′(π/λ)1/2

(
1 + λ−1 + 3λ−2/4

)
.

(A.12)

Taking into account (A.12) and introducing the variable
θ = z − ct the expression (A.8) becomes

U = 2π1/2

∫∫ ∞

0

db db′ bb′F (b)F ∗(b′)J(b, b′) (A.13)

J(b, b′) = exp[2i(b− b′)ct]
∫ ∞

−∞
dθ exp[i(b− b′)θ]R(θ)

(A.14)

with

R(θ) = λ−1/21 + λ−1 + 3λ−2/4,

λ ≡ λ(θ) = a(b+ b′) + i(b− b′)θ. (A.15)

We follow from now on Ziolkowski in the Appendix of
reference [3]. The θ-integration in (A.14) can be performed
as a contour integral and the singularity of the integrand
is at the point θs with θs = i[(b′ + b)(b′ − b)−1] a. Suppose
first b′ �= b, the sign of (b′ − b) determines whether θs is
located in the upper or lower half of the complex θ-plane.
It is in the upper half plane if b′−b > 0 and the lower half
plane if b′−b < 0. However, to ensure the proper behavior
at of the integrand at the infinity so that the contour can
be closed in the upper half-plane, one must have b′−b < 0
and b′ − b > 0. Consequently because θs is not contained
within the closed contour the θ-integral is zero for b �= b′
and (A.13) becomes

U = 2π1/2

∫ ∞

0

db b2|F (b)|2[J(b, b′)]b=b′ (A.16)

where with b′ − b = ε

[J(b, b′)]b=b′ = lim
ε⇒0

∫ ∞

−∞
dθ exp[iεθ]R(εθ) (A.17)

in which R(εθ) is obtained from (A.15) with b′−b changed
into ε in λ. And still using the Ziolkowski’s generaliza-
tion [3] of a previous result [18] we get according to (A.15)

[J(b, b′)]b=b′ = 2π
∫ ∞

0

dy exp(−y)
[
(y + 2ab)−1/2

+ (y + 2ab)−3/2 + 3(y + 2ab)−5/2/4
]
. (A.18)
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Integrating by parts gives
∫ ∞

0

dy exp(−y)[(y + 2ab)−3/2 =

2(2ab)−1/2 − 2
∫ ∞

0

dy exp(−y)[(y + 2ab)−1/2

∫ ∞

0

dy exp(−y)[(y + 2ab)−5/2 =

2/3(2ab)−3/2 − 4/3(2ab)−1/2

+ 4/3
∫ ∞

0

dy exp(−y)[(y + 2ab)−1/2.

(A.19)

Substituting (A.19) into (A.18) gives

[J(b, b′)]b=b′ = 2π
[
(2ab)−1/2 + 1/2(2ab)−3/2 (A.20)

and taking into account (A.20) we get finally from (A.16)

U = 4π3/2(2a)−1/2

∫ ∞

0

db b2 |F (b)|2
(
b3/2 + b1/2/4a

)
.

(A.21)

Appendix B

The electromagnetic energy U of the superluminal splash
waves obtained by weighting (11) as in (7) is, according
to (10) and (11a)

U =
∫∫ ∞

−∞
dxdz|ω|−1

∫∫ ∞

−∞
db db′F (b)F ∗(b′)

× exp(−bΠ − b′Π∗)P (b, b′) (B.1)

where P (b, b′) is (A.3) with ex, ez, hy transformed to ηx,
ηz, ξy while

exp(−bΠ−b′Π∗) = exp[ij(b−b′)(z−ct)] exp
(−κx2/|ω|2)

(B.2)

with

κ = a(b+ b′) + im(b− b′)(z + ct), |ω|2 = a2 + (z + ct)2.
(B.3)

Substituting (B.2) into (B.1) gives

U =
∫∫ ∞

0

db db′F (b)F ∗(b′)
∫ ∞

−∞
dz exp[ij(b− b′)(z − ct)]

×
∫ ∞

−∞
dxG◦(x) (B.4)

where

G◦(x) = |ω|−1P (b, b′) exp
(−κx2/|ω|2) . (B.5)

And using the expressions (11) of ηx, ηz, ξy the same cal-
culation as in (A.9) gives

P (b, b′) = 2j2bb′ +m2/2|ω|2 + (4bb′ − κ|ω|−2)x2/|ω|2
+ 2bb′m2x4/|ω|4. (B.6)

Substituting (B.6) into (B.5) and using (A.11) gives
∫ ∞

−∞
dxG◦(x) = 2bb′(π/λ)1/2

(
j2 + κ−1

+ 3m2κ−2/4
)

+ (m2 − 1)bb′/|ω|2. (B.7)

Taking into account (B.7) we write (B.4) U = U1 + U2

with a = z + ct

U1 = 2π1/2

∫∫ ∞

0

db db′bb′F (b)F ∗(b′)J1(b, b′) (B.8)

J1(b, b′) = exp[−2ij(b− b′)ct]
∫ ∞

−∞
dα exp[ij(b− b′)α]

× (
j2 + κ−1 + 3m2κ−2/4

)
(B.9)

and

U2 = 2π1/2(m2 − 1)
∫∫ ∞

0

db db′bb′F (b)F ∗(b′)J2(b, b′)

(B.10)

J2(b, b′) = exp[−2ij(b− b′)ct]
∫ ∞

−∞
dα

(
a2 +m2α2

)−1

× exp[ij(b− b′)α]. (B.11)

Proceeding as for (A.16) and using (A.18), (A.19) we get
from (B.8), (B.9)

U1 = 4π3/2(2a)−1/2

∫ ∞

0

db b2|F (b)|2

×
[
(2 −m2)b3/2 +m2b1/2/4a+ p(b)

]
(B.12)

p(b) =
(
2a−1/2b2

) (
j2 +m2 − 2

) ∫ ∞

0

dy

× exp(−y)[(y + 2ab)−1/2. (B.13)

Now the integral in (B.11) is [21]
∫ ∞

−∞
dα

(
a2 +m2α2

)−1
exp[ij(b− b′)α] =

(π/am) exp(−aj|b− b′|/m). (B.14)

Then, substituting (B.11) into (B.10) and taking into ac-
count (B.14) gives

U2 = 2π3/2
[
(m2 − 1)/am

] ∫∫ ∞

0

db db′ bb′F (b)F ∗(b′)

× exp[−h|b− b′|) (B.15)

where

h = aj/m− 2ijct, Reh > 0 (B.16)
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